分析 (Ⅰ)由题意设出等差数列的公差,再由已知列式求得首项和公差,则数列{an}的通项公式可求;
(Ⅱ)直接由等差数列的前n项和公式得答案.
解答 解:(Ⅰ)在递增等差数列{an}中,设公差d>0,
由题意,$\left\{\begin{array}{l}{{a}_{1}+2d=1}\\{({a}_{1}+3d)^{2}={a}_{1}+6d}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=-3}\\{d=2}\end{array}\right.$,
数列{an}的通项公式为an=2n-5;
(Ⅱ)由(Ⅰ)知,${S}_{10}=10×(-3)+\frac{10×9}{2}×2=60$.
点评 本题考查等差数列的通项公式,考查了等比数列的性质,训练了等差数列前n项和的求法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2 | B. | $y={x^{\frac{1}{3}}}$ | C. | y=x-1 | D. | $y={x^{-\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在 | |
| B. | 若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在 | |
| C. | $\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,则$\underset{lim}{x→{x}_{0}}$f(x)=0 | |
| D. | 若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com