精英家教网 > 高中数学 > 题目详情
6.已知直线$x=\frac{π}{4}\;和\;x=\frac{5π}{4}$是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

分析 由条件利用正弦函数的图象的周期性求得ω的值,再利用图象的对称性求得φ的值,可得函数的解析式.

解答 解:由题意可得$\frac{5π}{4}$-$\frac{π}{4}$=$\frac{T}{2}$=$\frac{π}{ω}$,∴ω=1,故f(x)=sin(x+φ).
故f($\frac{π}{4}$)=sin($\frac{π}{4}$+φ)=1,f($\frac{5π}{4}$)=sin($\frac{5π}{4}$+φ)=-1 ①;
或 f($\frac{π}{4}$)=sin($\frac{π}{4}$+φ)=-1,f($\frac{5π}{4}$)=sin($\frac{5π}{4}$+φ)=1 ②.
根据0<φ<π,由①求得φ=$\frac{π}{4}$,由②求得 φ无解,
故选:A.

点评 本题主要考查正弦函数的图象的周期性以及图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知A(3,-5),B(1,-7),则线段AB的中点的坐标是(2,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在递增等差数列{an}中,a3=1,a4是a3和a7的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求该数列的前10项的和S10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知OA,OB,OC交于点O,$AD\underline{\underline{∥}}\frac{1}{2}OB$,E,F分别为BC,OC的中点.求证:DE∥平面AOC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,半径R=2的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差等于8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l1:6x+my-1=0与直线l2:2x-y+1=0平行,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列式子中,正确的是(  )
A.-1+(-1)=2B.$\frac{1}{2}$+$\frac{1}{3}$=$\frac{1}{5}$
C.23•2n-1=23n-3D.$\frac{1}{101}$+$\frac{1}{202}$+$\frac{1}{303}$+$\frac{1}{606}$=$\frac{2}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15. 已知正方体ABCD-A1B1C1D1的棱长为2a,E为CC1的中点,F为B1C1的中点.
(1)求证;BD⊥A1E;
(2)求证:平面A1BD⊥平面EBD;
(3)求证:平面A1BF⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过双曲线x2-$\frac{{y}^{2}}{3}$=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案