精英家教网 > 高中数学 > 题目详情
f(x),g(x)都是定义在R上的单调递增函数,f(x)>0,g(x)<0,则
f(x)
g(x)
 (  )
分析:由f(x)>0,g(x)<0易得
f(x)
g(x)
<0
,利用单调性定义可判断其单调性.
解答:解:由f(x)>0,g(x)<0得,
f(x)
g(x)
<0

设x1<x2,则f(x1)<f(x2),g(x1)<g(x2),
f(x1)
g(x1)
-
f(x2)
g(x2)
=
f(x1)g(x2)-f(x2)g(x1)
g(x1)g(x2)

=
f(x1)g(x2)-f(x1)g(x1)+f(x1)g(x1)-f(x2)g(x1)
g(x1)g(x2)

=
f(x1)[g(x2)-g(x1)]+[f(x1)-f(x2)]g(x1)
g(x1)g(x2)

因为f(x)>0,g(x)<0,f(x1)<f(x2),g(x1)<g(x2),
所以g(x1)g(x2)>0,f(x1)[g(x2)-g(x1)]>0,[f(x1)-f(x2)]g(x1)>0,
所以
f(x1)
g(x1)
-
f(x2)
g(x2)
>0,即
f(x1)
g(x1)
f(x2)
g(x2)

所以
f(x)
g(x)
递减,
故选B.
点评:本题考查函数的单调性,属中档题,定义是解决该类题目的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、若函数f(x)和g(x)的定义域、值域都是R,则不等式f(x)>g(x)有解的充要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)和g(x)的定义域、值域都是R,则不等式f(x)>g(x)有解的充要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间[m,n]上的两个函数f(x)和g(x),如果对任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,则称函数f(x)与g(x)在[m,n]上是“友好”的,否则称“不友好”的.现在有两个函数f(x)=loga(x-3a)与g(x)=loga
1x-a
(a>0,a≠1),给定区间[a+2,a+3].
(1)若f(x)与g(x)在区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论函数f(x)与g(x)在区间[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案