精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱BC的中点.
(Ⅰ)求证:AD⊥平面BCC1B1
(Ⅱ)求证:A1B∥平面AC1D;
(Ⅲ)求平面AC1D与平面ACC1A1所成的锐二面角的余弦值.

【答案】分析:(Ⅰ)先证明AA1⊥平面ABC,可得CC1⊥AD,再利用线面垂直的判定定理,即可证明AD⊥平面BCC1B1
(Ⅱ)利用三角形中位线的性质,证明A1B∥OD,利用线面平行的判定定理证明A1B∥平面AC1D;
(Ⅲ)建立空间直角坐标系,求出平面AC1D与平面ACC1A1的法向量,利用向量的夹角公式,即可求锐二面角的余弦值.
解答:(Ⅰ)证明:因为侧面ABB1A1,ACC1A1均为正方形
所以AA1⊥AC,AA1⊥AB
所以AA1⊥平面ABC  …(1分)
因为AD?平面ABC,AA1∥CC1,所以CC1⊥AD  …(2分)
又因为AB=AC,D为BC中点,所以AD⊥BC     …(3分)
因为CC1∩BC=C,所以AD⊥平面BCC1B1;    …(4分)
(Ⅱ)证明:连结A1C,交AC1于点O,连结OD
因为ACC1A1为正方形,所以O为AC1中点
又D为BC中点,所以OD为△A1BC中位线
所以A1B∥OD   …(6分)
因为OD?平面AC1D,AB1?平面AC1D
所以A1B∥平面AC1D…(8分)
(Ⅲ)解:因为侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°
所以AB,AC,AA1两两互相垂直,如图所示建立直角坐标系A-xyz
设AB=1,则A(0,0,0),
==(0,1,1)…(9分)
设平面AC1D的法向量为=(x,y,z),则有
,∴x=-y=z
取x=1,得=(1,-1,1)…(10分)
又因为AB⊥平面ACC1A1
所以平面ACC1A1的法向量为…(11分)
∴cos<>===       …(12分)
所以,平面AC1D与平面ACC1A1所成的锐二面角的余弦值为…(13分)
点评:本题考查线面垂直,线面平行,考查面面角,考查空间向量知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案