精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn
分析:(1)由已知可得,
1
an+1
=
4+
1
a
2
n
 即
1
a
2
n+1
-
1
a
2
n
=4
从而可得数列{
1
a
2
n
}是等差数列,首项
1
a
2
1
=1
,公差d=4的等差数列,从而可求
1
a
2
n
=1+4(n-1)
  结合an>0可求an
(2)由已知可得,bn=
1
4n-3
1
4n+1
=
1
4
(
1
4n-3
-
1
4n+1
),从而利用裂项可求和
解答:解:(1)-
1
an+1
=f(an)=-
4+
1
a
2
n
且an>0
1
an+1
=
4+
1
a
2
n
1
a
2
n+1
-
1
a
2
n
=4

∴数列{
1
a
2
n
}是等差数列,首项
1
a
2
1
=1
,公差d=4
1
a
2
n
=1+4(n-1)
a
2
n
=
1
4n-3

∵an>0∴an=
1
4n-3

(2)bn=
1
4n-3
1
4n+1
=
1
4
(
1
4n-3
-
1
4n+1

Tn=
1
4
(1-
1
5
+
1
5
-
1
9
+…+
1
4n-3
-
1
4n+1
)
=
1
4
(1-
1
4n+1
)
=
n
4n+1
点评:本题主要考查了利用数列的递推公式求解数列的通项公式,解(1)题的关键是构造等差的形式,裂项求和是数列求和中的重要方法,要注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案