科目:高中数学 来源: 题型:
2 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:2014届广东汕头金山中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
1)求,的标准方程, 并分别求出它们的离心率;
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:江苏省2010届三校四模联考 题型:解答题
【选做题】在A、B、C、D四小题中只能选做两题,每小题l0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4 – 1几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,
∠BAC的平分线与BC交于点D.
求证:ED2= EB·EC.
B.矩阵与变换
已知矩阵,,求满足的二阶矩阵.
C.选修4 – 4 参数方程与极坐标
若两条曲线的极坐标方程分别为r = 1与r = 2cos( + ),它们相交于A,B两点,求线段AB的长.
D.选修4 – 5 不等式证明选讲
设a,b,c为正实数,求证:a3 + b3 + c3 + ≥2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com