【题目】已知数列的前项和满足,数列满足.
Ⅰ求数列和数列的通项公式;
Ⅱ令,若对于一切的正整数恒成立,求实数的取值范围;
Ⅲ数列中是否存在,且 使,,成等差数列?若存在,求出的值;若不存在,请说明理由.
【答案】Ⅰ,;Ⅱ或;Ⅲ 不存在,理由见解析.
【解析】
Ⅰ利用已知条件通过,说明数列是首项为1,公比为2的等比数列,从而可求出的通项公式,然后求解的通项公式;Ⅱ求出,判断数列的单调性,结合对于一切的正整数恒成立,得到求解即可;Ⅲ假设存在,使,,成等差数列,推出说明是与条件矛盾,得到结论.
Ⅰ根据题意,数列满足,
当时,.当时,,,
即.
所以数列是首项为1,公比为2的等比数列
所以,;
又由已知,得
Ⅱ依题意得,.
因为,
所以当时,取得最大值
因为对于一切的正整数n恒成立,
所以
解得或,
所以实数x的取值范围是或;
Ⅲ假设存在,使,,成等差数列,
则,即
两边同时除以,得
因为为偶数,为奇数,这与矛盾.
所以不存在,使,,成等差数列
科目:高中数学 来源: 题型:
【题目】已知向量=(2sin x,cos x),=(-sin x,2sin x),函数f(x)=·
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=1,c=1,ab=2,且a>b,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)证明:直线与曲线相交于两点,并求两点之间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:
(1)求的值;
(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过点的直线与抛物线相切,设第一象限的切点为.
(Ⅰ)证明:点在轴上的射影为焦点;
(Ⅱ)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆且过点,求直线与圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com