精英家教网 > 高中数学 > 题目详情
6.比较大小:(1)sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);(2)cos$\frac{3π}{7}$>cos$\frac{5π}{7}$.

分析 (1)由正弦函数y=sinx在(-$\frac{π}{2}$,0)单调递增可得;
(2)由余弦函数y=cosx在(0,π)单调递减可得.

解答 解:(1)∵正弦函数y=sinx在(-$\frac{π}{2}$,0)单调递增,
又∵-$\frac{π}{5}$,-$\frac{2π}{5}$∈(-$\frac{π}{2}$,0)且-$\frac{π}{5}$>-$\frac{2π}{5}$,
∴sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);
(2)∵余弦函数y=cosx在(0,π)单调递减,
又∵$\frac{3π}{7}$,$\frac{5π}{7}$∈(0,π)且$\frac{3π}{7}$<$\frac{5π}{7}$,
∴cos$\frac{3π}{7}$>cos$\frac{5π}{7}$
故答案为:>;>

点评 本题考查三角函数值的大小比较,涉及三角函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设不等式组$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,其中a>0,若z=2x+y的最小值为$\frac{1}{2}$,则a=(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(x+1)-kx(k∈R).
(1)若k=1,证明:当k>0时,f(x)<0;
(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>0;
(3)确定k的所有可能取值,使得存在t>0,对任意的x∈(0,t)恒有|f(x)|<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:$\underset{lim}{x-∞}$(1+$\frac{1}{2x}$)x+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-2ax+1.
(1)若函数g(x)=loga[f(x)+a](a>0,a≠1)的定义域为R,求实数a的取值范围;
(2)当x>0时,恒有不等式$\frac{f(x)}{x}$>lnx成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-bx+1.
(1)求实数a,b使不等式f(x)<0的解集是{x|3<x<4};
(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.己知函数f(x)与它的导函数f'(x)满足x2f'(x)+xf(x)=lnx,且f(e)=$\frac{1}{e}$,则下列结论正确的是(  )
A.f(x)在区间(0,+∞)上是减函数B.f(x)在区间(0,+∞)上是增函数
C.f(x)在区间(0,+∞)上先增后减D.f(x)在区间(0,+∞)上是先减后增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足为D,求证:AD⊥面BPC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cosx+ax2-1,a∈R.
(1)求证:函数f(x)是偶函数;
(2)当a=1时,求函数f(x)在[-π,π]上的最大值及最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案