精英家教网 > 高中数学 > 题目详情

(02年北京卷理)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有

       A.种       B.种      C.种       D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年北京卷理)(14分)

是定义在[0,1]上的函数,若存在,使得在[0,]上单调递增,在[,1]单调递减,则称为[0,1]上的单峰函数,为峰点,包含峰点的区间为含峰区间对任意的[0,1]上的单峰函数,下面研究缩短其含峰区间长度的方法

(Ⅰ)证明:对任意的 , ,若,则(0,)为含峰区间;若,则(,1)为含峰区间;

(Ⅱ)对给定的(0<<0.5),证明:存在,满足,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+;

(Ⅲ)选取, 由(Ⅰ)可确定含峰区间为(0,)或(,1),在所得的含峰区间内选取,由类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

科目:高中数学 来源: 题型:

(02年北京卷理)(13分)

已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:

.

   (Ⅰ)求f(0),f(1)的值;

   (Ⅱ)判断的奇偶性,并证明你的结论;

   (Ⅲ)若,求数列{un}的前n项的和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(02年北京卷理)已知且|z1|=1.若,则的最大值是

       A.6                        B.5                        C.4                        D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

(02年北京卷理)如图所示,是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,任意恒成立”的只有

 
 

 

 

 

 


A.      B.                C.      D.

查看答案和解析>>

同步练习册答案