精英家教网 > 高中数学 > 题目详情

如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD
(1)求证:AB⊥平面PAD;
(2)若AD=1,数学公式,BC=4,求直线AB与平面PDC所成角的大小.

(1)证明:∵PD⊥面ABCD,AB?面ABCD,∴PD⊥AB,
∵底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,
∴AB⊥AD
∵PD∩AD=D,∴AB⊥平面PAD;
(2)解:∵PD⊥平面ABCD,PD?平面PDC
∴平面PDC⊥平面ABCD.
过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G,则∠FDG为直线AB与平面PDC所成的角.

在Rt△DFC中,∠DFC=90°,
,∴∠FDG=60°.
即直线AB与平面PDC所成角为60°.
分析:(1)利用线面垂直的性质,可得PD⊥AB,结合底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,利用线面性质的判定定理可得AB⊥平面PAD;
(2)过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G,可得∠FDG为直线AB与平面PDC所成的角,从而可得结论.
点评:本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津一中高三(下)第二次月考数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省五市高三第一次联考数学试卷(文科)(解析版) 题型:解答题

如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

同步练习册答案