精英家教网 > 高中数学 > 题目详情

已知函数的首项a1=1,其前n项和为Sn,且对任意正整数n,有n成等差数列。

(1)求证:数列成等比数列;

(2)求数列的通项公式。

解:(1)为等差数列

 

 

 

成等比数列

(2)由(1)知是以为首项,2为公比的等比数列。

 

   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
x
+
2
)2(x>0)
,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,求数列cn的前n 项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x,等比数列{an}的首项a1>0,公比q=2,若f(a2a4a6a8a10)=25,则f(a1)+f(a2)+…+f(a2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x,等比数列{an}的首项a1>0,公比q=2,若f(a2a4a6a8a10)=25,则2f(a1)+f(a2)+…+f(a2009)  =
21004×2009
21004×2009

查看答案和解析>>

同步练习册答案