精英家教网 > 高中数学 > 题目详情
15.已知圆O:x2+y2=10,过点P(-3,-4)的直线l与圆O相交于A,B两点,若△AOB的面积为5,则直线l的斜率为$\frac{1}{2}$或$\frac{11}{2}$.

分析 利用△AOB的面积为5,得出OA⊥OB,设出直线方程,利用圆心到直线的距离d=$\frac{|3k-4|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}•\sqrt{10}$,求出直线的斜率.

解答 解:圆O:x2+y2=10的圆心坐标为O(0,0),半径为$\sqrt{10}$,
∵△AOB的面积为5,
∴$\frac{1}{2}×\sqrt{10}×\sqrt{10}×sin∠AOB$=5,
∴sin∠AOB=1,
∴∠AOB=90°,
∴OA⊥OB.
设过点P(-3,-4)的直线l的方程为y+4=k(x+3),即kx-y+3k-4=0,
圆心到直线的距离d=$\frac{|3k-4|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}•\sqrt{10}$,
∴k=$\frac{1}{2}$或$\frac{11}{2}$.
故答案为:$\frac{1}{2}$或$\frac{11}{2}$.

点评 本题考查直线与圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$垂直,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.0B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{1}{2-x}$的图象与函数y=2sinπx(-2≤x≤6)的图象所有交点的横坐标之和等于(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$,(m为常数),若对于任意实数a,b,c,总有f(a)+f(b)>f(c)恒成立,则实数m的取值范围为[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.同时掷两枚骰子,向上的点数之和是5的概率是(  )
A.$\frac{1}{11}$B.$\frac{1}{9}$C.$\frac{2}{5}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=sin2x-($\frac{2}{3}$)${\;}^{\sqrt{|x|}}$+$\frac{1}{2}$,有下列四个结论,其中正确结论的个数为(  )
A.f(x)是奇函数B.f(x)的最小值是$-\frac{1}{2}$
C.f(x)的最大值是$\frac{5}{6}$D.当x>2003时,$f(x)>\frac{1}{2}$恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于下列命题:其中所有真命题的序号是①②④.
①函数f(x)=ax+1-2a在区间(0,1)内有零点的充分不必要条件是$\frac{1}{2}<a<\frac{2}{3}$;
②已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的充分不必要条件;
③“a<2”是“对任意的实数x,|x+1|+|x-1|≥a恒成立”的充要条件;
④“0<m<1”是“方程mx2+(m-1)y2=1表示双曲线”的充分必要条件.
⑤$cos{20°}•cos{40°}•cos{80°}=\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)为二次函数,f(0)=2,且满足f(x+1)-f(x)=2x-1.
(1)求f(x)的表达式;
(2)当x∈[-2,2]时,求函数的值域;
(3)当∈[t,t+1]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A(x1,y1)是抛物线y2=4x上的一个动点,B(x2,y2)是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的一个动点,定点N(1,0),若AB∥x轴,且x1<x2,则△NAB的周长l的取值范围是(  )
A.($\frac{2}{3}$,2)B.($\frac{10}{3}$,4)C.($\frac{51}{16}$,4)D.(2,4)

查看答案和解析>>

同步练习册答案