精英家教网 > 高中数学 > 题目详情
已知|
a
|=1,|
b
|=2,
c
=
a
-
b
,且
c
a
,则
a
b
夹角为(  )
A、30°B、60°
C、120°D、150°
分析:根据两个向量垂直写出两个向量的数量积为0,整理出要的结果是两个向量的数量积是1,这两个向量的夹角的余弦就可以通过用两个向量的数量积除以两个向量的模长的积表示.根据角的范围得到结果.
解答:解:∵
c
=
a
-
b
,且
c
a

∴(
a
-
b
)•
a
=0,
a
2
-
a
b
=0

a
b
=1,
∴cosθ=
a
b
|
a
||
b
|
=
1
2

∵θ∈[0°,180°]
∴θ=60°
故选B.
点评:本题考查两个向量的数量积来表示两个向量的夹角,解决本题要注意的是求出两个向量的夹角的余弦值以后,注意写出夹角的范围,从而得到结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=1
|
b
|=
2
a
⊥(
a
-
b
)
,则向量
a
与向量
b
的夹角是(  )
A、30°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a|
=1
|
b
|=2
a
⊥(
a
+
b
)
,则
a
b
夹角的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=
3
,且
a
b
的夹角为
π
6
,则|
a
-
b
|的值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2
,向量
a
b
的夹角为
3
c
=
a
+2
b
,则
c
的模等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=1,b=2.
(1)若sin
A
2
=
1
4
,求sinB的值;
(2)若cosC=
1
4
,求△ABC的周长.

查看答案和解析>>

同步练习册答案