精英家教网 > 高中数学 > 题目详情
阜阳三中新校区计划在2013年招聘生活老师,要求男性x名,女性y名,x和y须满足约束条件
2x-y≥5
x-y≤2
x≤6
,则阜阳三中在2013年招聘的生活老师最多(  )名.
A、9B、10C、13D、14
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=x+y,利用数形结合即可得到z的最大值.
解答: 解:设z=x+y,则y=-x+z,
作出不等式组对应的平面区域,如图:
平移直线y=-x+z由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,
此时z最大,
x=6
2x-y=5
,解得
x=6
y=7
,即A(6,7),
此时z的最大值为z=6+7=13,
故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从0,1,2,…,9这10个整数中任意取3个不同的数作为二次函数f(x)=ax2+bx+c的系数,则使得
f(1)
2
∈Z的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC内角A,B,C的对边,且a,b,c成等比数列,且B=
π
3
,则
1
tanA
+
1
tanC
=(  )
A、
3
B、
3
2
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P的元素个数为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2,且0≤
OP
OB
≤2,则动点P到点C的距离小于
1
5
的概率为(  )
A、
π
20
B、1-
π
20
C、
19π
20
D、1-
19π
20

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,n=1,2,3,….
(Ⅰ)求a2、b2的值;
(Ⅱ)求数列{an}、{bn}的通项公式;
(Ⅲ)证明:对一切正整数n,有
1
a1-1
+
1
a2-1
+
1
a3-1
+…+
1
an-1
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足对于任意实数x∈R,均有f(x)+2f(-x)=ex+2(
1
e
x+x成立.
(1)求f(x)的解析式并求f(x)的最小值;
(2)证明:(
1
n
)n+(
2
n
)n+
+(
n
n
)n
e
e-1
.(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零数列{an}的递推公式为a1=1,an=an•an+1+2an+1(n∈N*
(1)求证:数列{1+
1
an
}是等比数列;
(2)若关于n的不等式
1
n+log2(1+
1
a1
)
+
1
n+log2(1+
1
a2
)
+…+
1
n+log2(1+
1
an
)
<m-
5
2
有解,求整数m的最小值.
(3)在数列{
1
an
+1-(-1)n}(1≤n≤11)中,是否一定存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列?若存在,请指出r、s所满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,且
an
2
Sn
2
an+1
2
数列n(∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
数列{bn}中是否存在正整数对(m,n),当m<n时使得{bn}中的三项b1,bm,bn ,成等差数列.若存在,求出m,n;若不存在,说明理由.

查看答案和解析>>

同步练习册答案