精英家教网 > 高中数学 > 题目详情
(2012•汕头一模)某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为x包,已知每次进货的运输劳务费为62.5元,全年保管费为1.5x元.
(Ⅰ)将该商店经销洗衣粉一年的利润y(元)元表示为每次进货量x(包)的函数;
(Ⅱ)为使利润最大,每次应进货多少包?
分析:(1)由年销售总量为6000包,每次进货均为x包,可得进货次数,进而根据每包进价为2.8元,销售价为3.4元,计算出收入,由每次进货的运输劳务费为62.5元,全年保管费为1.5x元计算出成本,相减可得利润的表达式;
(II)由(1)中函数的解析式,由基本不等式,结合x的实际意义,可得使利润最大,每次应进货包数.
解答:解:(Ⅰ)由题意可知:一年总共需要进货
6000
x
(x∈N*且x≤6000)次,
y=3.4×6000-2.8×6000-
6000
x
•62.5-1.5x

整理得:y=3600-
375000
x
-
3x
2
(x∈N*且x≤6000).
(Ⅱ)y=3600-
375000
x
-
3x
2
=3600-(
375000
x
+
3x
2
)
(x∈N*且x≤6000),
375000
x
+
3x
2
2
375000
x
3x
2
=2
562500
=2×750=1500

(当且仅当
375000
x
=
3x
2
,即x=500时取等号)
∴当x=500时,ymax=3600-1500=2100(元),
答:当每次进货500包时,利润最大为2100元.
点评:本题考查的知识点是函数最值的应用,其中根据已知条件计算出利润y(元)元表示为每次进货量x(包)的函数表达式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•汕头一模)(坐标系与参数方程选做题)过点(2,
π
3
)
且平行于极轴的直线的极坐标方程为
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E为DB的中点.
(Ⅰ)证明:AE⊥BC;
(Ⅱ)若点F是线段BC上的动点,设平面PFE与平面PBE所成的平面角大小为θ,当θ在[0,
π4
]内取值时,直线PF与平面DBC所成的角为α,求tanα的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)求三棱锥F-CBE的体积.

查看答案和解析>>

同步练习册答案