精英家教网 > 高中数学 > 题目详情

圆ρ=数学公式(cosθ+sinθ)的圆心的极坐标是


  1. A.
    (1,数学公式
  2. B.
    数学公式数学公式
  3. C.
    数学公式数学公式
  4. D.
    (2,数学公式
A
分析:先在极坐标方程ρ=(cosθ+sinθ)的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换化成直角坐标方程求解即得.
解答:将方程ρ=(cosθ+sinθ)两边都乘以ρ得:ρ2=pcosθ+ρsinθ,
化成直角坐标方程为x2+y2-x-y=0.圆心的坐标为().
化成极坐标为(1,).
故选A.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四边形OAQP的面积为S.
(1)求
OA
OQ
+S
的最大值及此时θ的值θ0
(2)设点B的坐标为(-
3
5
4
5
)
,∠AOB=α,在(1)的条件下求cos(α+θ0).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且B(-
3
5
4
5
)
,∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四边形OAQP的面积为S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求
OA
OQ
+S
的最大值及此时θ的值θ0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)如图,A是单位圆与x轴正半轴的交点,点B,P在单位圆上,且B(-
3
5
4
,5
),∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
.设四边形OAQP的面积为S,
(1)求cos(α-
π
6
);
(2)求f(θ)=
OA
OQ
+S的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且B(-
3
5
4
5
),∠AOB=α

(Ⅰ)求
4cosα-2sinα
5cosα+3sinα
的值;
(Ⅱ)设平行四边形OAQP的面积为S,∠AOP=θ(0<θ<π),f(θ)=(cosθ+S)S,求f(θ)的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源:2013年四川省泸州市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且
(Ⅰ)求的值;
(Ⅱ)设平行四边形OAQP的面积为S,∠AOP=θ(0<θ<π),f(θ)=(cosθ+S)S,求f(θ)的最大值及此时θ的值.

查看答案和解析>>

同步练习册答案