精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)在直角坐标平面内,已知函数f(x)=loga(x+2)+3(a>0且a≠1)的图象恒过定点P,若角θ的终边过点P,则cos2θ+sin2θ的值等于(  )
分析:令函数解析式中x=-1,得到f(x)=3,可得出此函数恒过(-1,3),即为P的坐标,根据P的坐标及P在第二象限,利用任意角的三角函数定义确定出sinθ和cosθ的值,然后将所求式子的第二项利用二倍角的正弦函数公式化简后,将sinθ和cosθ的值代入,计算后即可得到值.
解答:解:∵函数f(x)=loga(x+2)+3,当x=-1时,f(-1)=3,
∴此函数图象恒过P(-1,3),
又角θ的终边过点P点,
∴sinθ=
3
10
10
,cosθ=-
10
10

则cos2θ+sin2θ=cos2θ+2sinθcosθ
=(-
10
10
2+2×
3
10
10
×(-
10
10
)=-
1
2

故选A
点评:此题考查了二倍角的正弦函数公式,对数函数的单调性与特殊点,以及任意角的三角函数定义,其中确定出P的坐标是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案