精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1)(x>0)}\\{{2}^{x+1}(x≤0)}\end{array}\right.$,则f($\sqrt{10}$)+f(-1)=3.

分析 直接利用导函数求解函数值即.

解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1)(x>0)}\\{{2}^{x+1}(x≤0)}\end{array}\right.$,
则f($\sqrt{10}$)+f(-1)=log3(10-1)+2-1+1=2+1=3.
故答案为:3.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+(2m-1)$\overrightarrow{{e}_{2}}$+(4-n)$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=-2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$+($\frac{1}{2}$n+2)$\overrightarrow{{e}_{3}}$,($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$为单位正交基底),且$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在同一平面直角坐标系中,曲线C:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后,变为曲线C′.
(1)求曲线C′的方程;
(2)在曲线C′上求一点P,使点P到直线x+2y-8=0的距离最小,求出最小值并写出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,若集合A={x|-1≤x≤5},B={x|y=lg(x-1)},则∁U(A∩B)为(  )
A.{1<x≤5}B.{x≤-1或x>5}C.{x≤1或x>5}D.{1≤x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设方程2x=|log2(-x)|的两个根分别为x1,x2,则(  )
A.x1x2<0B.0<x1x2<1C.x1x2=1D.x1x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线x=1,x=2,y=0与曲线y=$\frac{1}{x(x+1)}$围成图形的面积为(  )
A.ln2B.ln$\frac{4}{3}$C.ln3D.ln3-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)是定义在(-3,3)上的奇函数,且单调递减,若f(2-a)+f(4-3a)<0,则a的取值范围为$({\frac{1}{3},\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ>-1且λ≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.两个形如y=xα(α为常数)的幂函数图象最少有几个交点(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案