精英家教网 > 高中数学 > 题目详情
10.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x-1|,若方程f(x)=$\sqrt{x+a}$有4个不相等的实根,则实数a的取值范围是(  )
A.(-$\frac{5}{4}$,1)B.($\frac{3}{4}$,1)C.($\frac{4}{5}$,1)D.(-1,$\frac{3}{4}$)

分析 由题意和偶函数的性质求出f(x)的解析式,化简后可得f2(x),将f(x)=$\sqrt{x+a}$两边平方后,画出函数y=x+a与y=f2(x)的图象,并画出两条临界线,由特殊点和导数的几何意义分别求出a的值,将方程根的个数问题转化为函数图象交点个数的问题,由图象求出实数a的范围.

解答 解:设x<0,则-x>0,
∵当x≥0时,f(x)=|x-1|,∴f(-x)=|-x-1|=|x+1|,
∵f(x)是定义在R上的偶函数,∴f(x)=f(-x)=|x+1|,
则f(x)=$\left\{\begin{array}{l}{|x-1|,x≥0}\\{|x+1|,x<0}\end{array}\right.$,即${f}^{2}(x)=\left\{\begin{array}{l}{(x-1)^{2},x≥0}\\{(x+1)^{2},x<0}\end{array}\right.$,
由f(x)=$\sqrt{x+a}$得,f2(x)=x+a,
画出函数y=x+a与y=f2(x)的图象,如图所示:
由图知,当直线y=x+a过点A时有三个交点,
且A(1,1),此时a=1,
当直线y=x+a相切与点P时有三个交点,
由图知,y=f2(x)=(x+1)2=x2+2x+1,
则y′=2x+2,令y′=2x+2=1得x=$-\frac{1}{2}$,则y=$\frac{1}{4}$,
此时切点P($-\frac{1}{2}$,$\frac{1}{4}$),代入y=x+a得a=$\frac{3}{4}$,
∵方程f(x)=$\sqrt{x+a}$有4个不相等的实根,
∴函数y=x+a与y=f2(x)的图象有四个不同的交点,
由图可得,实数a的取值范围是($\frac{3}{4}$,1),
故选B.

点评 本题考查函数奇偶性的性质,函数与方程的应用,利用数形结合是解决本题的关键,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{5}x,x≥1}\\{2x-1,x<1}\end{array}\right.$,零点的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.半径为2cm的轮子按逆时针方向旋转,若轮周上一点转过的弧长是3cm,则轮子转过的弧度数为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.球O被平面α所截得的截面圆的面积为π,且球心到α的距离为$\sqrt{15}$,则球O的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=2,P,Q分别为棱AA1,AC的中点.
(1)在平面ABC内过点A作AM∥平面PQB1交BC于点M,并写出作图步骤,但不要求证明;
(2)若侧面ACC1A1⊥侧面ABB1A1,求直线A1C1与平面PQB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),椭圆的离心率为$\frac{\sqrt{3}}{3}$.
(1)求椭圆C的标准方程;
(2)过点F2的直线l与椭圆C相交于A,B两点,求△F1AB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,F1、F2分别是双曲线的左、右焦点,过F1的直线与双曲线的左、右两支分别相交于B、A两点,若△ABF2为等边三角形,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B,若△ABF2是以∠ABF2为顶点的等腰直角三角形,则双曲线的离心率的平方为(  )
A.5+2$\sqrt{2}$B.4+2$\sqrt{2}$C.$\sqrt{7}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给定四组数据:甲:1,2,3,4,5;乙:1,3,5,7,9;丙:1,2,3;丁:1,3,5.其中方差最小的一组是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案