精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=-\frac{2f'(1)}{3}\sqrt{x}-{x^2}$的最大值为f(a),则a等于(  )
A.$\frac{1}{16}$B.$\frac{{\root{3}{4}}}{4}$C.$\frac{1}{4}$D.$\frac{{\root{3}{4}}}{8}$

分析 求出函数的导数,计算f′(1)的值,从而求出函数f(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的最大值点即可.

解答 解:∵f′(x)=-$\frac{2f′(1)}{3}$•$\frac{1}{2\sqrt{x}}$-2x,
∴f′(1)=-$\frac{1}{3}$f′(1)-2,
解得:f′(1)=-$\frac{3}{2}$,
故f(x)=$\sqrt{x}$-x2
f′(x)=$\frac{1-4x\sqrt{x}}{2\sqrt{x}}$,
令f′(x)>0,解得:x<$\frac{\root{3}{4}}{4}$,
令f′(x)<0,解得:x>$\frac{\root{3}{4}}{4}$,
故f(x)在[0,$\frac{\root{3}{4}}{4}$)递增,在($\frac{\root{3}{4}}{4}$,+∞)递减,
故f(x)的最大值是f($\frac{\root{3}{4}}{4}$),
a=$\frac{\root{3}{4}}{4}$,
故选:B.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.一个三棱锥的三视图如图所示,则三棱锥的体积为(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列4,a,9是等比数列是“a=±6”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=-2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在Rt△AOB中,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$|\overrightarrow{OA}|=\sqrt{5}$,$|\overrightarrow{OB}|=2\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}•\overrightarrow{EA}=\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.$({-∞,\frac{1}{e}})$D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{5i}{2-i}$=(  )
A.1+2iB.-1+2iC.-1-2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=3sin(x+$\frac{π}{6}$)在x=θ时取得最大值,则tanθ等于(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线y=kx+2与椭圆$\frac{x^2}{4}+{y^2}=1$相交于A,B两点,O为坐标原点,若∠AOB=90°.求该直线的方程.(写成斜截式)

查看答案和解析>>

同步练习册答案