4£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=sin¦Á\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£¬ÇÒ¦Á¡Ê[0£¬¦Ð£©£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin¦È£®
£¨1£©ÇóC1µÄ¼«×ø±ê·½³ÌÓëC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©£©ÈôPÊÇC1ÉÏÈÎÒâÒ»µã£¬¹ýµãPµÄÖ±Ïßl½»C2ÓÚµãM£¬N£¬Çó|PM|•|PN|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öC1µÄÆÕͨ·½³Ì£¬¼´¿ÉÇóC1µÄ¼«×ø±ê·½³Ì£¬ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯·½·¨µÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x={x}_{0}+tcos¦Á}\\{y={y}_{0}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|•|PN|=|1+2y0|£¬¼´¿ÉÇó|PM|•|PN|µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÏûÈ¥²ÎÊý¿ÉµÃx2+y2=1£¬ÒòΪ¦Á¡Ê[0£¬¦Ð£©£¬ËùÒÔ-1¡Üx¡Ü1£¬0¡Üy¡Ü1£¬
ËùÒÔÇúÏßC1ÊÇx2+y2=1ÔÚxÖáÉÏ·½µÄ²¿·Ö£¬
ËùÒÔÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¨0¡Ü¦È¡Ü¦Ð£©£®¡­£¨2·Ö£©
ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y+1£©2=1¡­£¨5·Ö£©
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò0¡Üy0¡Ü1£¬Ö±ÏßlµÄÇãб½ÇΪ¦Á£¬
ÔòÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x={x}_{0}+tcos¦Á}\\{y={y}_{0}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£®¡­£¨7·Ö£©
´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬
ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|•|PN|=|1+2y0|£¬
ÒòΪ0¡Üy0¡Ü1£¬ËùÒÔ|PM|•|PN|=¡Ê[1£¬3]¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªµãMµ½µãF£¨3£¬0£©µÄ¾àÀë±ÈµãMµ½Ö±Ïßx+4=0µÄ¾àÀëС1£®
£¨1£©ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÈôÇúÏßCÉÏ´æÔÚÁ½µãA£¬B¹ØÓÚÖ±Ïßl£ºx-4y-12=0¶Ô³Æ£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa3+a8£¾0£¬ÇÒS9£¼0£¬ÔòS1¡¢S2¡¢¡­S9ÖÐ×îСµÄÊÇ£¨¡¡¡¡£©
A£®S5B£®S6C£®S7D£®S8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µÈÑüÈý½ÇÐÎABC£¬EΪµ×±ßBCµÄÖÐµã£¬ÑØAEÕÛµþ£¬Èçͼ£¬½«CÕÛµ½µãPµÄλÖã¬Ê¹P-AE-CΪ120¡ã£¬ÉèµãPÔÚÃæABEÉϵÄÉäӰΪH£®
£¨1£©Ö¤Ã÷£ºµãHΪEBµÄÖе㣻
£¨2£©£© Èô$AB=AC=2\sqrt{2}£¬AB¡ÍAC$£¬ÇóÖ±ÏßBEÓëÆ½ÃæABPËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬SnΪ¸ÃÊýÁеÄǰÏîºÍ£¬${a_1}=1£¬2{S_n}={a_n}•{a_{n+1}}£¨{N¡Ê{n^*}}£©$£¬Âú×ã²»µÈʽ${log_2}£¨{1+\frac{1}{a_1}}£©+{log_2}£¨{1+\frac{1}{a_2}}£©+{log_2}£¨{1+\frac{1}{a_n}}£©£¾5$µÄÕýÕûÊýnµÄ×îСֵΪ32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô¼¯ºÏA={0£¬1}£¬B={y|y=2x£¬x¡ÊA}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{0}B£®{2}C£®{2£¬4}D£®{0£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=-\frac{2f'£¨1£©}{3}\sqrt{x}-{x^2}$µÄ×î´óֵΪf£¨a£©£¬ÔòaµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{16}$B£®$\frac{{\root{3}{4}}}{4}$C£®$\frac{1}{4}$D£®$\frac{{\root{3}{4}}}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôÊýÁÐ{an}µÄÊ×Ïîa1=2£¬ÇÒ${a_{n+1}}=3{a_n}+2£¨{n¡Ê{N^*}}£©$£»Áîbn=log3£¨an+1£©£¬Ôòb1+b2+b3+¡­+b100=5050£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{1}{3}t\\ y=\frac{{2\sqrt{2}}}{3}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬ÒÔxÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬ÇúÏßC1ÓëC2½»ÓÚÁ½µãP£¬Q£¬
£¨¢ñ£©ÇóÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Çó|PQ|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸