精英家教网 > 高中数学 > 题目详情
12.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P-AE-C为120°,设点P在面ABE上的射影为H.
(1)证明:点H为EB的中点;
(2)) 若$AB=AC=2\sqrt{2},AB⊥AC$,求直线BE与平面ABP所成角的正弦值.

分析 (1)证明:∠CEP为二面角C-AE-P的平面角,则点P在面ABE上的射影H在EB上,即可证明点H为EB的中点;
(2)过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,HN⊥面PAB.故HB在面PAB上的射影为NB,∠HBN为直线BE与面ABP所成的角,即可求直线BE与平面ABP所成角的正弦值.

解答 (1)证明:依题意,AE⊥BC,则AE⊥EB,AE⊥EP,EB∩EP=E.
∴AE⊥面EPB.
故∠CEP为二面角C-AE-P的平面角,则点P在面ABE上的射影H在EB上.
由∠CEP=120°得∠PEB=60°.…(3分)
∴EH=$\frac{1}{2}$EP=$\frac{1}{2}EB$.
∴H为EB的中点.…(6分)
(2)解:过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,
则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,
∴HN⊥面PAB.故HB在面PAB上的射影为NB.
∴∠HBN为直线BE与面ABP所成的角.…(9分)
依题意,BE=$\frac{1}{2}$BC=2,BH=$\frac{1}{2}$BE=1.
在△HMB中,HM=$\frac{\sqrt{2}}{2}$,
在△EPB中,PH=$\sqrt{3}$,
∴在Rt△PHM中,HN=$\frac{\sqrt{21}}{7}$.
∴sin∠HBN=$\frac{\sqrt{21}}{7}$.…(12分)

点评 本题考查线面垂直,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在空间中,下列命题正确的是(  )
A.如果直线m∥平面α,直线n?α内,那么m∥n
B.如果平面α⊥平面β,任取直线m?α,那么必有m丄β
C.若直线m∥平面α,直线n∥平面α,则m∥n
D.如果平面a外的一条直线m垂直于平面a内的两条相交直线,那么m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)的图象和g(x)=ln(2x)的图象关于直线x-y=0对称,则f(x)的解析式为$\frac{1}{2}$ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}满足a1+a2=10,a4-a3=2.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设等比数列{bn}满足b4=a3,b5=a7,问:b7与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列4,a,9是等比数列是“a=±6”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=-2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.$({-∞,\frac{1}{e}})$D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-3,-2,-1,0,1,2},B={x|-2≤x<3},则A∩B=(  )
A.{-2,-1,0}B.{-2,-1,0,1}C.{-2,-1,0,1,2}D.{-2,-1,0,1,2,3}

查看答案和解析>>

同步练习册答案