精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的顶点在坐标原点,焦点轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.

(1)求抛物线的标准方程;

(2)设直线轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

【答案】(1); (2).

【解析】【试题分析】(1)依据题设条件,直接运用抛物线的定义分析求解;(2)依据题设建立直线方程,再与抛物线方程联立,借助坐标之间的关系,建立方程求解:

(1)设所求抛物线方程为

,又,所以.

即该抛物线的标准方程为.

(2)由题意,直线的斜率存在,不妨设直线

,即(*)

抛物线在点处的切线方程为

,得,所以

三点共线,所以,得.

整理得

将(*)式代入上式得,即

所以所求直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ),设方程 的实根的个数为分别为,则

A. 9 B. 13 C. 17 D. 21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数的单调性并证明;

3)若对任意的,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数满足

1)求函数的解析式;

2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;

3)若函数,是否存在实数,使函数上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告知大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;

(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分,

请你从平均分和方差的角度来分析两个班的选手的情况;

主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分

布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集合中,抽取三个不同的元素构成子集.

(1)求对任意的满足的概率;

(2)若成等差数列,设其公差为,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

同步练习册答案