精英家教网 > 高中数学 > 题目详情

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1) ;(2) 有的把握认为该地区的老年人是否需要帮助与性别有关;(3)采用分层抽样方法比采用简单随机抽样方法更好.

【解析】试题分析:(1)由样本的频率估计总体的概率;(2)根据公式的值对比临界值可得结论;(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时可按性别分层抽样.

试题解析:(Ⅰ)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为

(Ⅱ),由于.

所以有的把握认为该地区的老年人是否需要帮助与性别有关;

(Ⅲ)由(Ⅱ)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一

人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.

年龄

分组

抽取份数

答对全卷

的人数

答对全卷的人数

占本组的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分别求出 的值;

(2)从年龄在答对全卷的人中随机抽取2人授予“环保之星”,求年龄在的人中至少有1人被授予“环保之星”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;

(2)设曲线轴的一个交点的坐标为,经过点作斜率为1的直线, 交曲线两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,函数

1)求函数的值域;

2)若对于任意的,总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.

(1)求抛物线的标准方程;

(2)设直线轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从5名男生和4名女生中选出4人去参加座谈会,问:

(1)如果4人中男生和女生各选2人,有多少种选法?

(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?

(3)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设.

①若,曲线处的切线过点,求的值;

②若,求在区间上的最大值.

(2)设 两处取得极值,求证: 不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,且椭圆的焦距为2.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过轴且与椭圆交于另一点 为椭圆的右焦点,求证:三点在同一条直线上.

查看答案和解析>>

同步练习册答案