已知函数
.
(1)从区间
内任取一个实数
,设事件
={函数
在区间
上有两个不同的零点},求事件
发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为
)得到的点数分别为
和
,记事件
{
在
恒成立},求事件
发生的概率.
(1)
;(2)
.
【解析】
试题分析:(1)根据函数
在区间
上有两个不同的零点,
得知
有两个不同的正根
和
,
由不等式组![]()
,利用几何概型得解.
(2)应用基本不等式得到
,
由于
在
恒成立,得到
;
讨论当
,
,
的情况,
得到满足条件的基本事件个数,而基本事件总数为
, 故应用古典概型概率的计算公式即得解.
试题解析:(1)
函数
在区间
上有两个不同的零点,
![]()
,即
有两个不同的正根
和![]()
![]()
4分
6分
(2)由已知:
,所以
,即![]()
,
![]()
在
恒成立
8分
当
时,
适合
;
当
时,
均适合
;
当
时,
均适合
;
满足
的基本事件个数为
. 10分
而基本事件总数为
, 11分
. 12分
考点:古典概型,几何概型,一元二次方程根的分别,基本不等式的应用,不等式恒成立问题.
科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题
对于非零向量
、
,“
”是“
”成立的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:选择题
、
,“
”是“
”成立的( )
A.充要条件 B.充分非必要条件
C.必要非充分条件 D.非充分非必要条件
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试理科数学试卷(解析版) 题型:选择题
已知点
与点
在直线
的两侧,且
, 则
的取值范围是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试文科数学试卷(解析版) 题型:填空题
已知
与
之间具有很强的线性相关关系,现观测得到
的四组观测值并制作了右边的对照表,由表中数据粗略地得到线性回归直线方程为
,其中
的值没有写上.当
等于
时,预测
的值为 .
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试文科数学试卷(解析版) 题型:选择题
在平面直角坐标系中,
为坐标原点,直线
与圆
相交于
两点,
.若点
在圆
上,则实数
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省菏泽市高三3月模拟考试理科数学试卷(解析版) 题型:填空题
设关于x,y的不等式组
表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则m的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com