精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+4,设函数F(x)=
f(x),(x>0)
-f(x),(x<0)

(1)求F(x)表达式;
(2)解不等式1≤F(x)≤2;
(3)设mn<0,m+n>0,判断F(m)+F(n)能否小于0?
分析:(1)由题义知分段函数求值应分段处理,利用函数f(x)的解析式即得.
(2)先对x的值进行分类讨论:当x>0时,当x<0时,分别解不等式,最后综合上述不等式的解即可;
(3)确定m,n的符号代入相应的解析式依据其形式进行判断.因为 m,n的符号有两个组合,又两种情况下解题结论是一样的,故只证其一种.
解答:解:(1)F(x)=
-x2+4x>0
x2-4x<0
;(2分)
(2)当x>0时,解不等式1≤-x2+4≤2,得
2
≤x≤
3
;(2分)
当x<0时,解不等式1≤x2-4≤2,得-
6
≤x≤-
5
.(2分)
综合上述不等式的解为
2
≤x≤
3
或-
6
≤x≤-
5
.(2分)
(3)∵mn<0,不妨设m>0,则n<0,又m+n>0,∴m>-n>0,
∴|m|>|n|,(2分)
∴F(m)+F(n)=-m2+4+n2-4=n2-m2<0,
即F(m)+F(n)能小于0.(4分)
点评:本题考点是分段函数,考查了求分段函数的解析式,一元二次不等式的解法,以及根据分段函数的定义选择解析式判断符号.解答的关键是分段函数求值应分段处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案