精英家教网 > 高中数学 > 题目详情
如图,直线l⊥x轴,从原点开始向右平行移动到x=8处停止,它扫过△AOB所得图形的面积为S,它与x轴的交点为(x,0).
(1)求函数S=f(x)的解析式;
(2)求函数S=f(x)的定义域、值域;
(3)作函数S=f(x)的图象.
考点:函数解析式的求解及常用方法,函数的图象
专题:函数的性质及应用
分析:(1)根据x的取值情况进行讨论,然后,写成分段函数的形式;
(2)根据(1),借助于函数的单调性求解值域问题;
(3)结合分段函数的特点,按段作出它们的图象.
解答: 解:(1)当0≤x≤4时,
s=f(x)=
1
2
x•x=
1
2
x2

当4<x≤8时,
s=f(x)=S△OAB-
1
2
(8-x)2

=
1
2
×8×4-
1
2
(8-x)2

=16-
1
2
(x-8)2

所以函数的解析式为:
s=f(x)=
1
2
x2    , x∈[0,4]
16-
1
2
(x-8)2  , x∈(4,8]

(2)根据(1),得到函数的定义域为[0,8],
当0≤x≤4时,
s=f(x)=
1
2
x•x=
1
2
x2

在[0,4]上为增函数,
所以,s∈[0,8];
当4<x≤8时,
s=f(x)=16-
1
2
(x-8)2

在(4,8]为增函数,
∴s∈(8,16],
综上,函数的值域为[0,16].
(3)函数图象如下图所示:
点评:本题重点考查分段函数的简单应用,函数的单调性及其运用等知识,属于中档题,考查分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x)和常数C,若对任意正实数ε,?x∈D,使得0<|f(x)-C|<ε恒成立,则称函数y=f(x)为“敛C函数”.现给出如下函数:
①f(x)=x(x∈Z); 
②f(x)=(
1
3
x+1(x∈Z);
③f(x)=log3x; 
④f(x)=
x-1
x

其中为“敛1函数”的有(  )
A、①②B、③④C、②④D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-x+lnx(a∈R,a≠0)
(Ⅰ)当a=2时,求曲线y=f(x)在(1,f(1))处的切线方程;
(Ⅱ)若在区间[1,+∞)上函数f(x)的图象恒在直线y=ax下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且?q是?p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在n个人的班级中,选出m个人参加大扫除,其中k个人擦窗户,其他人拖地板.现有两种方法选择人选:①先从班级中选出m人,现从他们当中选出k个人擦窗户.②先从班级中选出k个人擦窗户,再从班级剩下的人中选出m-k人拖地板.
(1)写出每种方法中选人方案数的数学表达式.
(2)你认为这两种方法选人的方案数相等吗?若相等,试证明之;若不相等请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:函数f(x)=-x2+4x在(2,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
2+log
1
2
x
+
tanx
的定义域
(2)设g(x)=cos(sinx),(0≤x≤π),求g(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明函数g(x)=
ex+e-x
2
的奇偶性,并求定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角B1-AE-F的余弦值.

查看答案和解析>>

同步练习册答案