精英家教网 > 高中数学 > 题目详情

【题目】某商品在近30天内每件的销售价格P(元)与时间t(天)的函数是:P=
该商品的日销售量Q(件)与时间t(天)的函数关系是:Q=﹣t+40(0<t≤30,t∈N*),求这种商品的日销售金额的最大值.

【答案】解:设日销售金额为y元,则y=PQ
y=
当0<t<25,t∈N+时,
y=﹣t2+20t+800=﹣(t﹣10)2+900,
∴t=10时,ymax=900元.
当25≤t≤30,t∈N+时,
y=t2﹣140t+4000=(t﹣70)2﹣900,
∴t=25时,ymax=1125元.
综上所述,这种商品日销售额的最大值为1125元
【解析】先设日销售金额为y元,根据y=PQ写出函数y的解析式,再分类讨论:当0<t<25,t∈N+时,和当25≤t≤30,t∈N+时,分别求出各段上函数的最大值,最后综合得出这种商品日销售额的最大值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.

(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;

当f(x)=lgx时,上述结论中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:
(1)甲试跳三次,第三次才能成功的概率;
(2)甲、乙两人在第一次试跳中至少有一人成功的概率;
(3)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣16x+q+3:
(1)若函数在区间[﹣1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k值为(

A.7
B.9
C.11
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数f(x)=ax2+bx+c(a≠0)在区间[﹣2,2]上的最大值、最小值分别是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间;

证明:当时,对于任意 ,总有成立,其中是自然对数的底数.

查看答案和解析>>

同步练习册答案