精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;

当f(x)=lgx时,上述结论中正确结论的序号是

【答案】②③
【解析】解:①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1lgx2
②f(x1x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2 , d都有f(x1)<f(x2

=

所以答案是:②③
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 为PD的中点.

(1)求异面直线BD与PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣4<x<1},B={x|( x≥2}.
(1)求A∩B,A∪B;
(2)设函数f(x)= 的定义域为C,求(RA)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(log2x)2﹣4log2x+1.
(1)求f(8)的值;
(2)当2≤x≤16时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记的导函数.

(1)若曲线在点处的切线垂直于直线,求的值;

(2)讨论的解的个数;

(3)证明:对任意的,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.

(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:

(2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格P(元)与时间t(天)的函数是:P=
该商品的日销售量Q(件)与时间t(天)的函数关系是:Q=﹣t+40(0<t≤30,t∈N*),求这种商品的日销售金额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1=(1+bi)(2+i),z2=3+(1﹣a)i(a,b∈R,i为虚数单位).
(1)若z1=z2 , 求实数a,b的值;
(2)若b=1,a=0,求| |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,底面是菱形, 平面 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案