精英家教网 > 高中数学 > 题目详情
20.已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的函数.
设f (x)=x2+x、g(x)=x+2,若h (x)为f (x)、g(x)在R上生成的一个偶函数,且h(1)=3,则函数h(-1)=3h (x)=-3x2+6.

分析 先得到h(x)=mx2+(m+n)x+2n,根据h(x)为偶函数及h(1)=3便可得出不等式组$\left\{\begin{array}{l}{m+n=0}\\{m+2n=3}\end{array}\right.$,这样解出m,n,便可求出h(x),并可得到h(-1)=3.

解答 解:h(x)=mf(x)+ng(x)
=m(x2+x)+n(x+2)
=mx2+(m+n)x+2n;
h(x)为偶函数;
∴m+n=0①;
又h(1)=3;
∴m+m+n+2n=3②;
联立①②解得m=-3,n=3;
∴h(-1)=3,h(x)=-3x2+6.
故答案为:3,-3x2+6.

点评 考查对h(x)为f(x),g(x)在R上生成函数的定义的理解,以及偶函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是公差为正数的等差数列,其前n项和为Sn,且a2•a3=15,S4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足b1=a1,${b}_{n+1}-{b}_{n}=\frac{1}{{a}_{n}•{a}_{n+1}}$.
①求数列{bn}的通项公式;
②是否存在正整数m,n(m≠n),使得b2,bm,bn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知球的表面积为4π,则球的内接正方体的边长的长为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点(m,n)在椭圆$\frac{x^2}{3}+\frac{y^2}{8}$=1上,则$\sqrt{3}$m的取值范围是(  )
A.[-3,3]B.(-3,3)C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求与椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1相交于A?B两点,并且线段AB的中点为M(1,1)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合X={x|-2≤x≤2,且x∈Z},下列关系式中成立的为(  )
A.0⊆XB.{0}∈XC.{0}⊆XD.∅∈X

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:x2+y2-4x-4y+4=0.
(1)求圆C的圆心坐标和半径;
(2)直线l过点A(4,0)、B(0,2),求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式x-y>0所表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-|x|+3a-1,(a为实常数).
(1)当a=0时,求不等式f(2x)+2≥0的解集;
(2)当a<0时,求函数f(x)的最大值;
(3)若a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案