精英家教网 > 高中数学 > 题目详情
9.若f(n)为n2+1(n∈N+)的各位数字之和,如142+1=197,a+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n)),k∈N+则f2015(8)=5.

分析 先利用前几项找到数列的特点或规律,fn(8)是以3为周期的循环数列,再求f2015(8)即可.

解答 解:由82+1=65得f(8)=5+6=11,
112+1=122得f(11)=1+2+2=5,
52+1=26得f(5)=2+6=8

⇒fn(8)是以3为周期的周期数列,
又2015=3×671+2,故f2015(8)=f2(8)=f(11)=5.
故答案为:5

点评 本题考查了新定义型的题.关于新定义型的题,关键是理解定义,并会用定义来解题.根据条件求出fn(8)是以3为周期的周期数列是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-$\frac{3}{2}$x+m(m∈R).
(I)求函数h(x)=g(x)-f(x)在区间[1,3]上的最大值和最小值;
(Ⅱ)若曲线y=f(x)和y=g(x)有公共的切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果命题P:x2-x=0,Q:x-1=0,那么P是Q的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若从集合A={x|-10≤x≤10}中随机取一个数输入,则输出的y值落在区间(-5,2)内的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为10000元,此鱼的市场价格和鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
鱼池产量(kg)300500
概 率0.50.5
鱼的市场价格(元/(kg)60100
概 率0.40.6
(Ⅰ)设X表示在这个鱼池养殖1季这种鱼的利润,求X的分布列和期望;
(Ⅱ)若在这个鱼池中连续3季养殖这种鱼,求这3季中至少有2季的利润不少于20000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式:$\frac{{x}^{2}-10x+9}{3{x}^{2}-13x+4}$≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-2|x-a|.
(1)若a=1,求不等式f(x)>2x的解集.
(2)若a>0,且方程f(x)=x恰有三个不同的实根,求a的取值范围.
(3)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=x2+$\frac{4(x-4)^{2}}{(x-2)^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.f(x)是定义在R上的以2为周期的偶函数,若f(-3)<0,f(2011)=$\frac{a-1}{a}$,则a的取值范围是0<a<1.

查看答案和解析>>

同步练习册答案