精英家教网 > 高中数学 > 题目详情

【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据

(1)利用所给数据求年需求量与年份之间的回归直线方程

(2)利用(1)计算2002年和2006年粮食需求量的残差;

(3)利用(1)中所求出的直线方程预测该地2012年的粮食需求量。

公式:

【答案】(1);(2)见解析;(3)万吨

【解析】

1)由所给数据看出,年需求量与年份之间是近似直线上升,利用回归直线方程,对数据预处理,求出预处理后的回归直线方程,从而求出对应的回归直线方程;

2)利用残差公式求得结果;

3)利用所求的回归直线方程,计算2012年的粮食需求量即可.

(1)由题意得,,

,

,

∴年需求量与年份之间的回归直线方程为.

(2)时,

时,

利用残差公式求得残差分别为1.8和-3.2;

(3)当时代入上式可得 .

∴可预测该地2012年的粮食需求量为万吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别为线段上的点,且.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2) 已知点的极坐标为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域和值域均为[-aa]的函数y=y=gx)的图象如图所示,其中acb0,给出下列四个结论正确结论的是(  

A.方程f[gx]=0有且仅有三个解B.方程g[fx]=0有且仅有三个解

C.方程f[fx]=0有且仅有九个解D.方程g[gx]=0有且仅有一个解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为棱的中点.

(Ⅰ)证明:

Ⅱ)若点为棱上一点,且求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客. 面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同. 某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查. 调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.

(1)根据题意,请将下面的列联表填写完整;

(2)根据列联表的数据,判断是否有99%的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)||,实数mn满足0mn,且f(m)f(n),若f(x)[m2n]上的最大值为2,则________.

查看答案和解析>>

同步练习册答案