精英家教网 > 高中数学 > 题目详情
(2013•唐山一模)1000名考生的数学成绩近似服从正态分布N(100,100),则成绩在120分以上的考生人数约为
23
23

(注:正态总体N(μ,σ2)在区.间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内取值的概率分别为0.683,0.954,0,997)
分析:根据正态分布,求出μ=100,σ=10,在区间(80,120)的概率为0.954,由此可求成绩在120分以上的考生人数
解答:解:由题意,μ=100,σ=10,在区间(80,120)的概率为0.954
∴成绩在120分以上的概率为
1-0.954
2
=0.023
∴成绩在120分以上的考生人数约为1000×0.023=23
故答案为:23
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•唐山一模)已知向量
a
b
满足(
a
+2
b
)•(
a
-
b
)=-6,且|
a
|=1,|
b
|=2,则
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)设集合A={1,2},则满足A∪B={1,2,3,4}的集合B的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)若复数
a-2i
1+i
(a∈R)
为纯虚数,则|3-ai|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,∠APD=
π2

(I )求证:平面PAB丄平面PCD;
(II)如果AB=BC,PB=PC,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)己知函数f(x)=(mx+n)e-x在x=1处取得极值e-1
(I )求函数f(x)的解析式,并求f(x)的单调区间;
(II )当.x∈(a,+∞)时,f(2x-a)+f(a)>2f(x),求a的取值范围.

查看答案和解析>>

同步练习册答案