【答案】
分析:利用单调性的定义来证明函数是一个单调函数,先设出任意两个正数变量,表明它们的大小关系,对两个变量对应的函数值做差,合并同类项,通分整理,最终形式是变化为因式的积或商的形式,这样就可以根据条件判断差和零的关系,得到结论.
解答:证明:任取0<x
1<x
2,
有

=

因为0<x
1<x
2,所以x
2-x
1>0,

,即f(x
1)-f(x
2)>0
所以,函数

在区间(0,+∞)上单调递减.
点评:本题考查函数单调性的证明,考查对于代数式的整理,是一个基础题,这种题目经常考到,可以作为一个解答题目的一问出现,这种题目的证法一般只有两种,一是用定义,二是用导数.