精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
x+y≥0
x-y+2≥0
x≤1
,则目标函数z=2x-y的最小值为(  )
A、1B、-1C、3D、-3
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=2x-y的最小值.
解答: 解:由z=2x-y,得y=2x-z,作出不等式对应的可行域(阴影部分),
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点A时,直线y=2x-z的截距最大,此时z取得最小值,
x-y+2=0
x+y=0
,解得
x=-1
y=1
,即A(-1,1).
将A(-1,1)的坐标代入z=2x-y,得z=-2-1=-3,
即目标函数z=2x-y的最小值为-3.
故选:D
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两人先后抛一位均匀的正方体骰子,甲的点数记为a,乙的点数记为b,则使log2ab的值为整数的概率为(  )
A、
5
6
B、
1
6
C、
11
36
D、
5
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x-1>0},则下列关系中成立的是(  )
A、0∈AB、∅∈A
C、∅⊆AD、2⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为1,P、Q分别为边AB,DA上的点,若∠PCQ=45°,则△APQ面积的最大值是(  )
A、2-
2
B、3-2
2
C、
1
8
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式
a(x-1)
x-2
≥1
(1)当a=1时,求不等式解集;
(2)当a≠1时,求不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1
(Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)=ax,x∈[2,3]时有唯一一个零点,且不是重根,求a的取值范围;
(Ⅲ)当x∈[-1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

x0是函数y=x3-(
1
2
)x
的零点,则x0所在的区间是(  )
A、(3,4)
B、(2,3)
C、(1,2)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人相约下午4:00-5:00在校门口会面,
(1)事件A:约定任何人先到都等侯15分钟,问两人会面之概率;
(2)事件B:约定甲先到都等侯15分钟,乙先到不等,问两人会面之概率;
(3)事件C:约定甲先到都等侯15分钟,乙先到等侯5分钟,问两人会面之概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的f(x)为奇函数,当x≥0,f(x)=x2-x,则f(x)解析式
 

查看答案和解析>>

同步练习册答案