精英家教网 > 高中数学 > 题目详情
18.已知cosx>1+ax2对x∈(0,$\frac{π}{2}$)恒成立,则a的取值范围$a≤-\frac{4}{{π}^{2}}$.

分析 把a分离出来,然后用导数,判断单调性从而求出最值.

解答 解:∵$\frac{cosx-1}{{x}^{2}}>a$在$(0,\frac{π}{2})$恒成立
∴$f(x)=\frac{cosx-1}{{x}^{2}}$$;{f}^{′}(x)=\frac{-[xsinx+2(1-cosx)]}{{x}^{3}}$;
∵xsinx>0,1-cosx>0
∴f′(x)<0,f(x)在(0,$\frac{π}{2}$)上单调递减.
$f(x)_{min}=f(\frac{π}{2})=-\frac{4}{{π}^{2}}$
即有a$≤-\frac{4}{{π}^{2}}$.
故答案为:a$≤-\frac{4}{{π}^{2}}$.

点评 本题主要考察了导数的综合应用,考察了转化思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:解答题

已知圆,直线 .

(1)求证:对,直线与圆总有两个不同交点;

(2)若圆与直线相交于两点,求弦的长度最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知D为以AB为斜边的Rt△ABC的外接圆O上一点,CE⊥AB,BD交AC,CE的交点分别为F,G,且G为BF中点,
(1)求证:BC=CD;
(2)过点C作圆O的切线交AD延长线于点H,若AB=4,DH=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若y=x+$\frac{{a}^{2}}{x}$(a>0)在[2,+∞)上是增函数,则a的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x-$\frac{1}{x}$-2mlnx(m∈R),讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=exlnx-aex(a∈R).
(1)若f(x)在点(1,f(1))处的切线与直线y=$\frac{1}{e}$x+1垂直,求a的值;
(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角梯形ABCD中,AB∥DC,AD⊥AB,DC=3,AB=2,AD=1,AE=EB,DF=1,现把它沿FE折起,得到如图所示几何体,连接DB,AB,DC,使DC=$\sqrt{5}$,
(1)求证:面DBC⊥面DFB;
(2)判断是否在DC上存在一点H,使二面角E-BH-C的余弦值为-$\frac{{\sqrt{30}}}{6}$,若存在,确定点H的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知P为函数y=ln(2x-1)图象上的一个动点,Q为函数y=2x+3图象上一个动点,则|PQ|2最小值=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA-sinC)=sinB(a-b)
(I)求角C的大小;
(II)若c=2,求a+b的取值范围.

查看答案和解析>>

同步练习册答案