精英家教网 > 高中数学 > 题目详情
点G是△OAB的重心,过G任作直线PQ分别交OA、OB于点P、Q,若
OP
=m
OA
OQ
=n
OB
,mn≠0,则
1
m
+
1
n
=
 
考点:基本不等式,平面向量的基本定理及其意义
专题:平面向量及应用
分析:由于三点P,G,Q共线,由向量共线定理可得:存在实数λ满足:
OG
OP
+(1-λ)
OQ
.利用点G是△OAB的重心,可得
OG
=
1
3
(
OA
+
OB
)
,再利用平面向量基本定理即可得出.
解答: 解:如图所示,
由于三点P,G,Q共线,
∴存在实数λ满足:
OG
OP
+(1-λ)
OQ

∵点G是△OAB的重心,
OG
=
2
3
OC
=
2
3
×
1
2
(
OA
+
OB
)
=
1
3
(
OA
+
OB
)

又∵
OP
=m
OA
OQ
=n
OB
,mn≠0,
1
3
OA
+
1
3
OB
=λm
OA
+(1-λ)n
OB

由于
OA
OB
不共线,
λm=
1
3
(1-λ)n=
1
3

1
m
+
1
n
=3λ+3(1-λ)=3.
故答案为:3.
点评:本题考查了向量共线定理、重心定理、平面向量基本定理等基础知识与基本技能方法,考查了推理能力和解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校在一次运动会上,将要进行甲、乙两名同学的乒乓球冠亚军决赛,比赛实行三局两胜制.已知每局比赛中,若甲先发球,其获胜的概率为
2
3
,否则其获胜的概率为
1
2

(Ⅰ)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率;
(Ⅱ)若第一局由乙先发球,以后每局由负方先发球.规定胜一局记2分,负一局记0分,记ξ为比赛结束时甲的得分,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

张师傅驾车从公司开往火车站,途经甲、乙、丙、丁4个交通岗,这4个交通岗将公司到火车站分成的5个时段,每个时段的驾车时间都是3分钟.甲、乙两交通岗遇到红灯的概率都是
1
3
;丙、丁两交通岗遇到红灯的概率都是
1
2
.每个交通岗遇到红灯都需要停车1分钟.假设他在各交通岗遇到红灯是相互独立的.
(Ⅰ)求张师傅此行程时间不小于16分钟的概率;
(Ⅱ)记张师傅此行程所需时间为X分钟,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两边b、c是方程x2-kx+40=0的两根,△ABC的面积是10
3
,周长是20,试求∠A和k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(x-
π
4
)cos(x-
π
4
)+2
3
cos2(x-
π
4

(Ⅰ)求f(x)的最大值及取到最大值时相应的x的集合;
(Ⅱ)若函数y=f(x)=-m在区间[0,
π
2
]上恰好有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:
①“x>1”是“x>2”的充分不必要条件;
②“若sinα≠
1
2
,则α≠
π
6
”;
③若xy=0,则x=0且y=0”的逆否命题;
④命题“?x0∈R,使x02-x0+1≤0”的否定.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,若S3=3,S6=18,则a8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=x2+2x,-2≤x≤2},B={x|x2+2x-3≤0},在集合A中任意取一个元素a,则a∈B的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图表示的算法的结果是
 

查看答案和解析>>

同步练习册答案