精英家教网 > 高中数学 > 题目详情
1.若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则f(1)=-4.

分析 根据导数的公式求函数导数,令x=2,先求出f'(2),然后令x=1即可得到结论.

解答 解:∵f(x)=x2+2f′(2)x+3,
∴f'(x)=2x+2f'(2),
当x=2,则f'(2)=4+2f'(2),
即f'(2)=-4,
∴f(x)=x2+2xf′(2)+3=x2-8x+3,
∴f'(1)=1-8+3=-4,
故答案为:-4.

点评 本题主要考查导数的计算,要求熟练掌握函数的导数公式,先求出f'(2)的值是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(x+$\frac{θ}{2}$)•cos(x+$\frac{θ}{2}$)+2$\sqrt{3}$cos2(x+$\frac{θ}{2}$)-$\sqrt{3}$.
(1)若0≤θ≤π,求使f(x)为偶函数的θ的值;
(2)在(1)的条件下,若直线y=m与函数y=|f(x)|($\frac{π}{12}$≤x≤$\frac{5π}{6}$)的图象有且仅有两个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{1}{2}$sin2x图象的振幅为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3-2x2+1,则f(1)+g(1)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,已知PA与圆O相切于点A,经过圆心O的割线PBC交圆O于点B,C,AC=AP,则$\frac{PC}{AC}$的值为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c.若$\frac{a}{b+c}+\frac{b}{a+c}$=1,则角C=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象,如图所示.
(1)求函数解析式;(2)若方程f(x)=m在[-$\frac{π}{12}$,$\frac{13π}{12}$]有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.($\frac{1}{x}$-x29展开式中的常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求曲线y=x3-$\frac{1}{x}$在点(1,0)处的切线方程.

查看答案和解析>>

同步练习册答案