精英家教网 > 高中数学 > 题目详情
一个直角△ABC的三边分别是AC=3,BC=4,AB=5,将这个三角形绕斜边AB旋转一周,所形成的几何体的表面积是
 
分析:由题意可知旋转体是有两个圆锥组成的几何体,求出圆锥的底面周长,即可得到几何体的表面积.
解答:解:一个直角△ABC的三边分别是AC=3,BC=4,AB=5,将这个三角形绕斜边AB旋转一周,所形成的几何体是有两个圆锥组成的几何体,圆锥的底面半径为:
12
5

所以几何体的表面积为:
1
2
×(
24π
5
)×(3+4)
=
84
5
π

故答案为:
84
5
π
点评:本题是基础题,考查旋转体的表面积的求法,正确判断几何体的特征,求出底面半径是解题的关键,考查计算能力,空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.
(1)设∠PBO=α,把y表示成α的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:
(1)(a+b+c)(a+b-c)=3ab
(2)sinA=2cosBsinC
(3)b=acosC,c=acosB
(4)2R(sin2A-sin2C)=(
2
a-b)sinB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题
 

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生从以下三个小题中任选一个作答,若多选,则按所选的第一题计分.
(1)若不等式|x-1|+|x-m|<2m的解集为∅,则m的取值范围为
(0,
1
3
(0,
1
3

(2)直线3x-4y-1=0被曲线
x=2cosθ
y=1+2sinθ
(θ为参数)所截得的弦长为
2
3
2
3

(3)若直角△ABC的内切圆与斜边AB相切于点D,且AD=1,BD=2,则△ABC的面积为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y.

(1)设,把y表示成的函数关系式;

(2)变电站建于何处时,它到三个小区的距离之和最小?

查看答案和解析>>

科目:高中数学 来源:2012届湖北省高三12月月考理科数学试卷 题型:解答题

某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.

(1)设,求y关于的函数关系式;

(2)变电站建于何处时,它到三个小区的距离之和最小?

 

 

 

查看答案和解析>>

同步练习册答案