精英家教网 > 高中数学 > 题目详情
7.求函数f(x)=$\sqrt{{x}^{2}+1}$-x的单调区间.

分析 求函数的导数,判断函数单调性即可得到结论.

解答 解:函数的f(x)的导数f′(x)=$\frac{x}{\sqrt{1+{x}^{2}}}-1$=$\frac{x-\sqrt{1+{x}^{2}}}{\sqrt{1+{x}^{2}}}$,
若x≤0,则f′(x)<0,
若x>0,则$\sqrt{1+{x}^{2}}$$>\sqrt{{x}^{2}}$=x,
则x-$\sqrt{1+{x}^{2}}$<0,
综上f′(x)<0,即函数在(-∞,+∞)上单调递减,
即函数的单调递减区间为(-∞,+∞).

点评 本题主要考查函数单调性和单调区间的求解,求函数的导数,利用导数研究函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)设g(x)=[f(x-$\frac{π}{12}$)]2,求函数g(x)在x∈[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值,并确定此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=$\sqrt{3x-{x}^{2}}$},B={x|$\frac{x+1}{x-2}$<0},则A∩B=(  )
A.{x|0<x<2}B.{x|0≤x<2}C.{x|-1<x≤3}D.{x|2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|}&{x∈(-∞,2)}\\{\frac{1}{2}f(x-2)}&{x∈[2,+∞)}\end{array}\right.$,g(x)=$\frac{1}{x}$,则函数F(x)=f(x)-g(x)的零点个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知9x-10•3x+9≤0,求函数y=${(\frac{1}{4})}^{x}$-${(\frac{1}{2})}^{x-2}$+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x<0,求y=$\frac{1+{x}^{2}}{x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知z=$\frac{(4-3i)^{2}(-1+\sqrt{3}i)^{10}}{(1-i)^{12}(3+i)^{4}}$,求3i-|z|的模及辐角主值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列各式中x的值.
(1)log4(log3x)=0;
(2)lg(log2x)=1;
(3)log${\;}_{(\sqrt{2}-1)}$$\frac{1}{\sqrt{3+2\sqrt{2}}}$=x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是定义在[-3,3]上的奇函数,当x∈[0,3]时,f(x)=x2-3x,且方程f(x)-kx+4=0有解,则k的取值范围是(  )
A.[-7,1]B.[-1,2]C.(-∞,-$\frac{4}{3}$]∪[1,+∞]D.(-∞,-7]∪[2,+∞)

查看答案和解析>>

同步练习册答案