精英家教网 > 高中数学 > 题目详情
(2013•延庆县一模)执行如图的程序框图,如果输入p=6,则输出的S=
31
32
31
32
分析:观察框图,属于循环结构中的直到型,S的初值为0,第一次执行循环体后加进去2-1,第二次执行循环体后加入2-2,…第n次执行循环体后加入2-n,由此明确其运算过程,
解答:解:由图可以看出,如果输入p=6,循环体被执行五次,第n次执行,对S作的运算就是加进去2-n
故S=2-1+2-2+…+2-5=
1
2
(1-
1
25
)
1-
1
2
=
31
32

故答案为:
31
32
点评:此题考查程序框图循环结构,解本题的关键是从图中解决两个问题一个是循环的次数,一个是做了什么运算,明白这两点,即可根据运算规则算了所求的数据,此类型的题是近几年高考中比较热的一种题型,以框图给出题面,用数列或是函数等别的知识进行计算,对此类型题要多加注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•延庆县一模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5
日均浓度
0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类型 轻度污染 中度污染 重度污染 严重污染
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=
log4x, x>0
3x, x≤0
,则f[f(
1
16
)]
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案