精英家教网 > 高中数学 > 题目详情

(选做题)若直线l:y=k(x-2)与曲线数学公式(参数θ∈R)有唯一的公共点,则实数k=________.


分析:把圆的参数方程化为普通方程后,找出圆心坐标和圆的半径,根据直线与圆有唯一的公共点得到直线与圆相切,利用点到直线的距离公式表示出圆心到已知直线的距离d,让d等于圆的半径列出关于k的方程,求出方程的解即可得到k的值.
解答:把曲线C的方程化为普通方程得:x2+y2=1,
圆心坐标为(0,0),半径r=1,
因为直线与圆有唯一的公共点,即相切,
所以圆心到直线的距离d==r=1,即k2=
解得:k=±
故答案为:
点评:此题考查学生会将圆的参数方程化为普通方程,灵活运用点到直线的距离公式化简求值,掌握直线与圆相切时满足的条件,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选做题)若直线l:y=k(x-2)与曲线C:
x=cosθ
y=sinθ
(参数θ∈R)有唯一的公共点,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(坐标系与参数方程选做题)
若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)(坐标系与参数方程选做题) 若直线l:x-
3
y=0
与曲线C:
x=a+
2
cos?
y=
2
sin?
(?为参数,a>0)有两个公共点A,B,且|AB|=2,则实数a的值为
2
2
;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为
ρ2-4ρcosθ+2=0
ρ2-4ρcosθ+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)
如图,若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC=
7
7

(B)(极坐标系与参数方程选做题)
若直线l:x-
3
y=0
与曲线C:
x=a+
2
cos?
y=
2
sin?
(?
为参数,a>0)有两个公共点A、B,且|AB|=2,则实数a的值为
2
2

(C)(不等式选做题)
不等式|2x-1|-|x-2|<0的解集为
.
x 
  
.
-1<x<1
.
x 
  
.
-1<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)(考生注意:请在下列三道试题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)若不等式|2a-1|≤ |x+
1
x
|
对一切非零实数x恒成立,则实数a的取值范围为
[-
1
2
3
2
]
[-
1
2
3
2
]

B.(几何证明选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°
30°

C.(极坐标与参数方程选做题)若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,圆C:
x=cosθ
y=sinθ
(θ为参数)上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

同步练习册答案