精英家教网 > 高中数学 > 题目详情
(2012•昌平区一模)(坐标系与参数方程选做题) 若直线l:x-
3
y=0
与曲线C:
x=a+
2
cos?
y=
2
sin?
(?为参数,a>0)有两个公共点A,B,且|AB|=2,则实数a的值为
2
2
;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为
ρ2-4ρcosθ+2=0
ρ2-4ρcosθ+2=0
分析:利用同角三角函数的基本关系消去参数∅,化为普通方程为 (x-a)2+y2=2 ①,求出圆心C到直线的距离d,由弦长公式求得实数a的值;把x=ρcosθ,y=ρsinθ代入①化简可得
曲线C的极坐标方程.
解答:解:由曲线C:
x=a+
2
cos?
y=
2
sin?
(?为参数,a>0),可得
2
cos∅=x-a,
2
sin∅=y,
平方相加可得 (x-a)2+y2=2 ①,表示以C(a,0)为圆心,以
2
为半径的圆,
圆心C到直线l:x-
3
y=0
的距离等于d=
|a-
3
×0|
1+3
=
a
2

再由弦长公式可得
|AB|
2
=1=
r2-d2
=
2-
a2
4
,解得a=2.
①即 (x-2)2+y2=2 ②,
把x=ρcosθ,y=ρsinθ代入②,化简可得 ρ2-4ρcosθ+2=0,
故答案为 2,ρ2-4ρcosθ+2=0.
点评:本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式,把直角坐标方程化为极坐标方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•昌平区一模)一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知函数f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a为实常数).
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=7,则|
b
|=
2
6
2
6

查看答案和解析>>

同步练习册答案