精英家教网 > 高中数学 > 题目详情
△ABC的三内角A,B,C所对边的长分别为a,b,c,,若,则sinB+sinC的取值范围是( )
A.
B.(]
C.[,1)
D.[,1)
【答案】分析:利用向量的坐标运算结合余弦定理可求得角A,从而利用两角和的正弦与辅助角公式可求sinB+sinC的取值范围.
解答:解:∵=(a+b,c),=(b-a,c-b),
∴(a+b)(b-a)+c(c-b)=0,
∴a2=b2+c2-bc,
由余弦定理知,a2=b2+c2-2bccosA,
∴cosA=,而A为△ABC的内角,
∴A=
∵△ABC中,A+B+C=π,
∴B+C=π-A=
∴sinB+sinC
=sin(-C)+sinC
=cosC-(-)sinC+sinC
=sinC+cosC
=sin(C+).
∵0<C<,故<C+
<sin(C+)≤1.
sin(C+)≤.即<sinB+sinC≤
故选B.
点评:本题考查余弦定理,考查数量积判断两个平面向量的垂直关系,考查三角函数间的关系式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的三内角A,B,C所对的边长分别为a,b,c,若向量
p
=(a+c,b)与
q
=(b-a,c-a)
是共线向量,则角C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sinAsinC=
34

(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c分别为△ABC的三内角A,B,C的对边.求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三内角A、B、C所对的边分别为a、b、c,边a、b是方程x2-2
3
x+2=0的两根,角A、B满足关系2sin(A+B)-
3
=0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
6
,cosB=
1
3
,f(
C
2
)=-
1
4
,求b.

查看答案和解析>>

同步练习册答案