精英家教网 > 高中数学 > 题目详情

已知平面直角坐标系中O是坐标原点,,圆的外接圆,过点(2,6)的直线为

(1)求圆的方程;

(2)若与圆相切,求切线方程;

(3)若被圆所截得的弦长为,求直线的方程。

 

【答案】

解:(1)圆C的方程为:

(2)         (3)

【解析】此题考查了直线与圆相交的性质,直线与圆的位置关系,以及圆的标准方程,涉及的知识有:两直线垂直时斜率满足的关系,直线斜率的求法,直线的点斜式方程,两点间的距离公式,线段中点坐标公式,点到直线的距离公式,垂径定理,以及勾股定理,利用了分类讨论及转化的思想,其中当直线与圆相交时,常常根据垂径定理由垂直得中点,进而利用弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

(1)三角形外接圆的圆心C为三角形三边垂直平分线的交点,故找出边OA与OB的垂直平分线交点即为圆心C,由A和O的坐标得出直线OA的斜率,利用两直线垂直时斜率满足的关系求出线段OA垂直平分线的斜率,再利用线段中点坐标公式求出线段OA的中点坐标,确定出线段OA垂直平分线的方程,找出线段OB垂直平分线的方程,两直线解析式联立求出两直线的交点坐标,即为圆心C的坐标,再由C与O的坐标,利用两点间的距离公式求出|OC|的长,即为圆C的半径,由圆心和半径写出圆C的标准方程即可;

(2)显然切线方程的斜率存在,设切线方程的斜率为k,由切线过(2,6),表示出切线的方程,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,即可确定出切线的方程;

(3)当直线l的斜率不存在时,显然x=2满足题意;当直线l的斜率存在时,设直线l的斜率为k,由直线l过(2,6),表示出直线l的方程,由弦长及半径,利用垂径定理及勾股定理求出弦心距,即为圆心C到直线l的距离,再利用点到直线的距离公式表示出圆心C到直线l的距离,列出关于k的方程,求出方程的解得到k的值,确定出直线l的方程,综上,得到所有满足题意的直线l的方程

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系中三点坐标分别为A(3,0),B(0,4),C(cosθ,sinθ),θ∈R,则△ABC面积的最大值为(  )
A、
7
2
B、
9
2
C、
17
2
D、
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐标及|
1
2
BC
|

(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF

(3)求向量
DB
DC
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-2,-5),B(4,-13).
(1)求
AB
的坐标及|
AB
|

(2)若
OC
=
OA
+
OB
OD
=
OA
-
OB
,求
OC
OD
的坐标;
(3)求
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和对称中心;
(Ⅱ)求f(x)在区间[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,角α的始边与x正半轴重合,终边与单位圆(圆心是原点,半径为1的圆)交于点P.若角α在第
一象限,且tanα=
4
3
.将角α终边逆时针旋转
π
3
大小的角后与单位圆交于点Q,则点Q的坐标为(  )

查看答案和解析>>

同步练习册答案