精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ln[(5+k)x2+6x+k+5],若f(x)在(-∞,-1]上为减函数,求实数k的取值范围.

分析 令(5+k)x2+6x+k+5=t,所以原函数是由y=lnt,和t=(5+k)x2+6x+k+5复合而成的复合函数,显然y=lnt在(0,+∞)上为增函数,从而根据复合函数的单调性,t=(5+k)x2+6x+k+5在(-∞,-1]上单调递减,且t>0,即可得出实数k的取值范围.

解答 解:令(5+k)x2+6x+k+5=t,所以原函数是由y=lnt,和t=(5+k)x2+6x+k+5复合而成的复合函数;
函数y=lnt在(0,+∞)上为增函数;
根据复合函数的单调性,t=(5+k)x2+6x+k+5在(-∞,-1]上单调递减,且t>0
∴$\left\{\begin{array}{l}{5+k>0}\\{-\frac{6}{2(5+k)}≤-1}\\{(5+k)-6+k+5>0}\end{array}\right.$
∴-2<k≤2
∴实数k的取值范围为(-2,2].

点评 考查复合函数的定义,复合函数的单调性的判断方法,以及二次函数的单调性及单调区间的求法,对数函数的单调性,注意要在定义域内找单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=$\sqrt{x-1}$},则(  )
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁IB)≠∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)的定义域为A.若函数f(x)满足:(ⅰ)A={x|x≠2k-1,k∈Z};(ⅱ)函数f(x)是奇函数;(ⅲ)对任意x∈A,有f(x+1)=-$\frac{1}{f(x)}$.则下面关于函数f(x)的叙述中错误的是(  )
A.函数f(x)是周期函数,且最小正周期是2
B.函数f(x)的图象关于点(1,0)中心对称
C.函数f(x)在区间(0,1)上是增函数
D.函数f(x)的零点是x=2k(其中k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x=$\frac{1}{2}$(2005${\;}^{\frac{1}{n}}$-2005${\;}^{-\frac{1}{n}}$)(其中n为正整数),那么(x-$\sqrt{1+{x}^{2}}$)n=-$\frac{1}{2005}$或$\frac{1}{2005}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{0!n!}$+$\frac{1}{1!(n-1)!}$+$\frac{1}{2!(n-2)!}$+…+$\frac{1}{n!0!}$=$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合P={x|x2+x-6=0},S={x|ax+1=0},若S∩P=S,则由a的可能取值组成的集合为{0,$\frac{1}{3}$,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\sqrt{3}$sinx+3cosx=$\frac{3\sqrt{3}}{2}$,则tan($\frac{7π}{6}$-x)等于(  )
A.±$\frac{\sqrt{7}}{3}$B.$±\frac{3}{4}$C.±$\frac{\sqrt{7}}{4}$D.$±\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.实数m分别为何值时,复数z=$\frac{2{m}^{2}+m-3}{m+3}$+(m2-3m-18)i是
(1)实数;
(2)虚数;
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a+2b=2,则4a+16b的最小值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案