精英家教网 > 高中数学 > 题目详情
9.若$P(ξ=K)=\frac{1}{2^K}$,则$\frac{n!}{{3!({n-3})!}}$的值为(  )
A.1B.20C.35D.7

分析 根据$P(ξ=K)=\frac{1}{2^K}$,求出n,即可求出$\frac{n!}{{3!({n-3})!}}$的值.

解答 解:由$P(ξ=K)=\frac{1}{2^K}$,得$\frac{n(n-1)(n-2)}{3×2×1}=\frac{n(n-1)(n-2)(n-3)}{4×3×2×1},n=7$,
所以$\frac{n!}{{3!({n-3})!}}=\frac{7×6×5×4!}{3!4!}=\frac{7×6×5}{3×2×1}=35$.
故选C.

点评 本题考查二项分布,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知点A(4,4)在抛物线y2=2px (p>0)上,该抛物线的焦点为F,过点A作该抛物线准线的垂线,垂足为E,则∠EAF的平分线所在的直线方程为(  )
A.2x+y-12=0B.x+2y-12=0C.2x-y-4=0D.x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,则z=x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}kx-k(x≥0)\\{x^2}+2ax-{({a-2})^2}(x<0)\end{array}\right.$,其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则k的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:y=k(x-1)交x轴于点A,交y轴于点B,交直线y=x于点C,
(1)若k=3,求$\frac{{|{BC}|}}{{|{AC}|}}$的值;
(2)若|BC|=2|AC|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.谷志伟,简书两位老师下棋,简老师获胜的概率是40%,谷老师不胜的概率为60%,则两位老师下成和棋的概率为(  )
A.10%B.30%C.20%D.50%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在正方体ABC的-A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P-BCD的俯视图与正视图面积之比的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足(3-4i+z)i=2+i,则复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>2,b>2,直线$y=-\frac{b}{a}x+b$与曲线(x-1)2+(y-1)2=1只有一个公共点,则ab的取值范围为(  )
A.$(4,6+4\sqrt{2})$B.$(4,6+4\sqrt{2}]$C.$[6+4\sqrt{2},+∞)$D.$(6+4\sqrt{2},+∞)$

查看答案和解析>>

同步练习册答案