精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\left\{\begin{array}{l}kx-k(x≥0)\\{x^2}+2ax-{({a-2})^2}(x<0)\end{array}\right.$,其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则k的最小值为(  )
A.1B.2C.3D.4

分析 由条件可知f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,且-(a-2)2=-k,从而得出a的范围,继而求出k的最小值.

解答 解:当x<0时,f(x)=(x+a)2-a2-(a-2)2
∵对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,
∴f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,且-(a-2)2=-k,即k=(a-2)2
∴-a≥0,即a≤0.
∴当a=0时,k取得最小值4.
故选:D.

点评 本题考查了二次函数的单调性与最值计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点,直线l经过点F,若点A(a,0),B(0,b)关于直线l对称,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{3}+1$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱锥P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中点,E是CD的中点,点F在PB上,$\overrightarrow{PF}$=3$\overrightarrow{FB}$.
(1)证明:EF∥平面ABC;
(2)若∠BAC=60°,求二面角B-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x+2cos x在区间[-$\frac{π}{2}$,0]上的最小值是-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.关于不同的直线m,n与不同的平面α,β,有下列四个命题:
①m⊥α,n⊥β且α⊥β,则m⊥n;②m∥α,n∥β且α∥β,则m∥n;
③m⊥α,n∥β且α∥β,则m⊥n;   ④m∥α,n⊥β且α⊥β,则m∥n.
其中正确的命题的序号是(  )
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{\begin{array}{l}{2^{-x}},x<1\\{log_3}x,x>1\end{array}\right.$.
(1)解方程:f(x)=2;
(2)解不等式:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$P(ξ=K)=\frac{1}{2^K}$,则$\frac{n!}{{3!({n-3})!}}$的值为(  )
A.1B.20C.35D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设不等式x2-4mx+4m2+m+$\frac{1}{m-1}$>0的解集为R,则实数m的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若${(x+\frac{1}{2x})^n}$(n≥4,n∈N*)的二项展开式中前三项的系数依次成等差数列,则n=8.

查看答案和解析>>

同步练习册答案