精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)已知函数( 为常数).

1求函数在点 ()处的切线方程;

2时,设,若函数在定义域上存在单调减区间,求实数的取值范围;

【答案】(1);(2

【解析】试题分析:(1)求出函数f(x)的导数,求得切线的斜率和切点,即可得到切线方程;

(2)若函数h(x)在定义域上存在单调减区间等价于:存在x>0使, 即存在x>0使x2-bx+1<0,运用参数分离,求得右边的最小值,即可得到所求范围.

试题解析:

(1)(),可得()所以又因为

f(x)在点(1f(1))处的切线方程是,即,所求切线方程为.

(2)()

依题存在使,∴即存在使

∵不等式等价于 (*)

(01)上递减,在[1)上递增,故)

∵存在,不等式(*)成立,∴.所求)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 为半圆 的直径,点 是半圆弧上的两点, .曲线 经过点 ,且曲线 上任意点 满足: 为定值.

(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数 的奇偶性.
(2)求 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中 ,存在 使得 成立,则实数 的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱为长方体,点上的一点.

(1)若的中点,当为何值时,平面平面

(2)若 ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是实数。设 为该函数图象上的两点,且.

1)若函数的图象在点处的切线互相垂直,且,求的最小值;

2)若函数的图象在点处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:

(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合的关系(不必说明理由);

(3)建立关于的回归方程,预测第5年的销售量.

附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中=2.71828…为自然数的底数.

(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的 .

查看答案和解析>>

同步练习册答案