精英家教网 > 高中数学 > 题目详情
已知向量m=(1,sin(wx+)),n=(2,2sin(wx-))(其中w为正常数)。
(Ⅰ)若w=1,x∈,求mn时,tanx的值;
(Ⅱ)设f(x)=m·n-2,若函数f(x)的图像的相邻两个对称中心的距离为,求f(x)在区间[0,]上的最小值。
解:(Ⅰ)时,



所以,
(Ⅱ)


∵函数f(x)的图像的相邻两个对称中心的距离为
∴f(x)的最小正周期为π,又w为正常数,
,解之,得w=1,

因为,所以,
故当时,f(x)取最小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)在△ABC中,角A、B、C的对边分别为a、b、c.已知向量
m
=(b,a-2c)
n
=(cosA-2cosC,cosB)
,且
m
n

(1)求
sinC
sinA
的值;
(2)若a=2,|m|=3
5
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•成都一模)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
ba
和c
的值;
(Ⅱ)求函数f(x)的单调递减区间(用字母a表示);
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t);并求S(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州模拟)在△ABC中,角A、B、C所对的边分别为a、b、c,已知向量
m
=(1,2sinA),
n
=(2,3cosA)满足
m
n

(I)求sin2
B+C
2
+cos2A的值;
(II)若△ABC的面积S=3,且b=2,求△ABC的外接圆半径R.

查看答案和解析>>

同步练习册答案